PMT

Question			Marking details	Marks Available
1	(a) (b)		0.40 [m] $y = \frac{0.050 0.450}{0.050 \text{ etc}} \exp\left(\frac{1}{1}\right) x 0.4 \text{ or by implication (1)}$	1
			$v = \frac{1}{0.10}, \frac{1}{0.10}$ etc of $(\frac{1}{0.8})^{10.4}$ of by implication (1) v = 0.50, 4.5 etc [m s ⁻¹] (1)	2
	(c)		1.25 Hz UNIT MARK [ecf on v and λ and T]	1
	(d)		same	1
	(e)		B lags A (1)	
			by ¹ / ₄ cycle / 90° / $\frac{\pi}{2}$ accept $\frac{T}{4}$ or $\frac{\lambda}{4}$ (1)	2
			Question 1 total	[7]
2	(a)		Direction of wave [or energy] travel and direction of [particle] displacements [or oscillations] are the same [or parallel].	1
	(b)	(i)	diffraction	1
		(ii)	No zeros (or waves spread right round) so $\lambda \ge 0.3$ m (1) $\lambda = 0.9$ m for 375 Hz or $\lambda = 0.09$ m for 3 750 Hz or if $\lambda = 0.3$ m then $f =$ 1 100 Hz (1) 375 Hz more likely with some supporting argument, e.g. the above, or even just "Longer wavelengths [or lower frequencies] spread more."] (1)	3
	(c)		$\lambda = 140 \text{ [mm]}$ (1) Any 2 x (1): Interference occurs between [accept superposition of] waves travelling in opposite directions [accept waves from speaker and reflected waves] Board acts as reflector Stationary wave set up	3
			Question 2 total	[8]

Question				Marking details	Marks Available
3	(a)	(i)		Same point in cycle at same time or equivalent	1
		(ii)		$S_2P - S_1P$ or equivalent. [Accept $S_1P - S_2P$]	1
		(iii)	(I)	Path difference = 36 mm (1) which is 3λ , so constructive. (1) Award 1 mark only for : $S_1Q = 28\lambda$, $S_2Q = 25\lambda$ therefore arrive in phase so constructive interference	2
			(II)	[Path difference doesn't change], so always constructive (1) but signal strength will decrease as we move further from sources. (1)	2
		(iv)		$y = \frac{12x360}{36}$ even if units inhomogeneous (1) y = 120 mm UNIT (1)	2
	(b)			correct insertion of 12 [mm] and 30 [mm] into grating equation or by implication (1) 24° (1) 53° (1) award 1 mark if both angles wrong because of arithmetic error Either 0° or $\pm 24^{\circ}$ and $\pm 53^{\circ}$ or equivalent. (1)	4
				Question 3 total	[12]
4	(a)	(i)		incident ray and angle c marked and grazing refracted ray	1
		(ii)		$n_1 \sin c = n_2 \sin 90^\circ$ (1) $\sin 90^\circ = 1$ or $n_1 \sin c = n_2$ (1)	2
	(b)	(i)		$\sin c = \frac{x}{s}$ and c marked on diagram (1) convincing algebra (1)	2
		(ii)		$v = 2.0 \times 10^8 \text{ m s}^{-1}$ [or by implication] (1) $t = 6.00 \ \mu[\text{s}]$ [or $t = 4.00 \ \mu\text{s}$, in which case first mark not gained] (1)	2
		(iii)		time via zigzag = 6.00 μ s x $\frac{1.500}{1.485}$ [= 6.06 μ s] or $\frac{1212}{2x10^8}$ (1) [ecf on t = 6.00 μ s or by implication] $\Delta t = 0.06 \mu$ [s] [ecf on 6.00 μ s] (1)	2
		(iv)		$\left[\frac{1}{6.00 \times 10^{-6}}\right] = 17 \times 10^{6} [s^{-1}] [Accept (18 \pm 2) \times 10^{6}] (1)$ assumes negligible pulse duration [or assumes angles of incidence range from 0 to <i>c</i> or longest path is 1 212 m] (1)	2
				Question 4 Total	[11]

Question				Marking details	Marks Available
5	(a)	(i)		[minimum] energy needed to eject an electron from the metal [or surface or solid not atom]	1
		(ii)		6.9 x 10 ¹⁴ [Hz]	1
		(iii)		Photon energy not high enough [< work function] (1) Electrons can't escape (1)	2
	(b)			$f = \frac{(E_{k\text{max}} + \phi)}{h}$ or correct transposition at any stage or by implic(1) = 1.0 x 10 ¹⁵ [Hz] (1)	2
	(c)	(i)		$3.2 \times 10^{-19} [J]$ (1) This uses the higher energy [or the higher frequency] photons, or produces the higher energy electrons, or photons don't co-operate or equivalent (1)	2
		(ii)		2.0 [V] ecf	1
				Question 5 Total	[9]
6	(a)	(i)		$\lambda = \frac{hc}{\Delta E} \text{ or } [\lambda = \frac{c}{f} \text{ and } E = hf] \text{ or } f = 2.8 \text{ x } 10^{14} \text{ [Hz]} (1)$ $\lambda = 1.06 \text{ x } 10^{-6} \text{ [m]} (1)$	2
		(ii)		<i>up</i> arrow from L to U (1) Photon's energy given to atom or electron (1)	2
		(iii)	(I)	[Incident] photon causes electron to drop from U to L. (1) Incident photon must have energy $E_{\rm U} - E_{\rm L}$ or equivalent (1) Photon emitted so now 2 photons present; accept by implic from emitted photon in phase.(1)	3
			(II)	Need more electrons in U than L. <i>Accept</i> : need pop'n inversion (1) Electrons pumped to P and drop to U (1) Electrons drop from L to ground [helping to keep L depopulated].(1)	3
	(b)			Any 2 x (1): monochromatic [or equivalent e.g. long wave-trains] photons in phase (don't accept waves in phase) light in phase (or wavefronts continuous) across width of beam	2
		1		Question 6 Total	[12]

Question				Marking details	Mark Available
7	(a)	(i)		$\lambda_{\text{peak}} = 430 \text{ n[m]} [\pm 10 \text{ nm}] (1)$ $T = 6700 [\text{K}] \text{ ecf on } \lambda_{\text{peak}}, \text{ provided it's not } 1200 \text{ nm} (1)$	2
		(ii)		T = 5400 [K] [± 250 K]	1
		(iii)		bluer or whiter at maximum T or redder at minimum T	1
	(b)			$A = \frac{P}{\sigma T^4} \text{ (transposition at any stage) or by implication (1)}$ $A = \frac{1.46 \times 10^{30}}{5.76 \times 10^{-8} \times 6700^4} \text{ [}= 1.3 \times 10^{22} \text{m}^2\text{] ecf on } T \text{ (1)}$ $\text{use of } A = 4 \pi r^2 \text{ or } A = \pi d^2 \text{ (1)}$ $d = 6.4 \times 10^{10} \text{ [m]} \text{ ecf on } T \text{ if value from } (a)(\text{i) used (1)}$ Slips of factors of 2 or 10 lose 1 mark each.	4
	(c)			$\left(\frac{P_{\min}}{P_{\max}}\right) = \left(\frac{T_{\min}}{T_{\max}}\right)^4 \text{ or } P_{\min} = 6.2 \times 10^{29} \text{ W ecf} (1)$ $\frac{P_{\min}}{P_{\max}} = 0.42 \text{ ecf} \text{ or } P_{\max} - P_{\min} = 8.4 \times 10^{29} \text{ W ecf} (1)$ $\left(\frac{P_{\max} - P_{\min}}{P_{\max}}\right) = 0.58 \text{ [accept]} = 58\% (1)$	3
				Question 7 Total	[11]
8	(a)			+2, 0 (1) $\bar{u}d$, -1, 0 (1) [blank], 0, 1 [Accept 'none' instead of cell left blank.] (1)	3
	(b)	(i)		Sun or stars	1
		(ii)		e-m and γ or photon involvement	1
		(iii)		In stage 1: $0 + 0$ goes to $0 - 1 + 1$ [or equivalent] (1) In stages 2 and 3, zeros throughout or equivalent (1)	2
		(iv)	(I)	uud + uud goes to uud + udd accept d: $2\rightarrow 3$, u: $4\rightarrow 3$ (1) A u is lost and a d is gained [or a u changes to a d]. (1)	2
			(II)	Neither involves weak force or equivalent e.g. only strong [and em] force involved.	1
				Question 8 Total	[10]