PH2

Question			Marking details	$\begin{gathered} \text { Marks } \\ \text { Available } \end{gathered}$
1	(a) (b) (c) (d) (e)		$0.40[\mathrm{~m}]$ $v=\frac{0.050}{0.10}, \frac{0.450}{0.10}$ etc or $\left(\frac{1}{0.8}\right) \times 0.4$ or by implication (1) $\begin{equation*} v=0.50,4.5 \text { etc }\left[\mathrm{m} \mathrm{~s}^{-1}\right] \tag{1} \end{equation*}$ 1.25 Hz UNIT MARK [ecf on v and λ and T] same B lags \mathbf{A} by $1 / 4$ cycle $/ 90^{\circ} / \frac{\pi}{2}$ accept $\frac{T}{4}$ or $\frac{\lambda}{4}$	1 2 1 1 2
			Question 1 total	[7]
2	(a) (b) (c)	(i) (ii)	Direction of wave [or energy] travel and direction of [particle] displacements [or oscillations] are the same [or parallel]. diffraction No zeros (or waves spread right round) so $\lambda \geq 0.3 \mathrm{~m}$ $\lambda=0.9 \mathrm{~m}$ for 375 Hz or $\lambda=0.09 \mathrm{~m}$ for 3750 Hz or if $\lambda=0.3 \mathrm{~m}$ then $f=$ 1100 Hz (1) 375 Hz more likely with some supporting argument, e.g. the above, or even just "Longer wavelengths [or lower frequencies] spread more."] (1) $\begin{equation*} \lambda=140[\mathrm{~mm}] \tag{1} \end{equation*}$ Any $2 \times(1)$: Interference occurs between [accept superposition of] waves travelling in opposite directions [accept waves from speaker and reflected waves] Board acts as reflector Stationary wave set up	1 1 3 3
			Question 2 total	[8]

Question				Marking details	Marks Available
3	(a)	(i) (ii) (iii) (iv)	(I) (II)	Same point in cycle at same time or equivalent $\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}$ or equivalent. [Accept $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}$] Path difference $=36 \mathrm{~mm}$ (1) which is 3λ, so constructive. (1) Award 1 mark only for : $S_{1} Q=28 \lambda, S_{2} Q=25 \lambda$ therefore arrive in phase so constructive interference [Path difference doesn't change], so always constructive (1) but signal strength will decrease as we move further from sources. (1) $\begin{align*} & y=\frac{12 \times 360}{36} \text { even if units inhomogeneous } \tag{1}\\ & y=120 \mathrm{~mm} \text { UNIT } \end{align*}$ correct insertion of $12[\mathrm{~mm}]$ and $30[\mathrm{~mm}]$ into grating equation or by implication (1) 24° (1) 53° (1) award 1 mark if both angles wrong because of arithmetic error Either 0° or $\pm 24^{\circ}$ and $\pm 53^{\circ}$ or equivalent.	1 1 2 2 2 4
				Question 3 total	[12]
4	(a) (b)	(i) (ii) (i) (ii) (iii) (iv)		incident ray and angle c marked and grazing refracted ray $\begin{align*} & n_{1} \sin c=n_{2} \sin 90^{\circ} \\ & \sin 90^{\circ}=1 \text { or } n_{1} \sin c=n_{2} \tag{1}\\ & \sin c=\frac{x}{s} \text { and } c \text { marked on diagram } \tag{1} \end{align*}$ convincing algebra $v=2.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ [or by implication] $t=6.00 \mu[\mathrm{~s}]$ [or $t=4.00 \mu \mathrm{~s}$, in which case first mark not gained] (1) $\begin{equation*} \text { time via zigzag }=6.00 \mu \mathrm{~s} \times \frac{1.500}{1.485}[=6.06 \mu \mathrm{~s}] \text { or } \frac{1212}{2 \times 10^{8}} \tag{1} \end{equation*}$ [ecf on $t=6.00 \mu \mathrm{~s}$ or by implication] $\Delta t=0.06 \mu[\mathrm{~s}$] [ecf on $6.00 \mu \mathrm{~s}$] (1) $\begin{equation*} \left[\frac{1}{6.00 \times 10^{-6}}\right]=17 \times 10^{6}\left[\mathrm{~s}^{-1}\right]\left[\text { Accept }(18 \pm 2) \times 10^{6}\right] \tag{1} \end{equation*}$ assumes negligible pulse duration [or assumes angles of incidence range from 0 to c or longest path is 1212 m]	1 2 2 2 2 2 2 2 2
				Question 4 Total	[11]

Question				Marking details	Marks Available
5	(a) (b) (c)	(i) (ii) (iii) (i) (ii)		[minimum] energy needed to eject an electron from the metal [or surface or solid not atom] $\begin{equation*} 6.9 \times 10^{14}[\mathrm{~Hz}] \tag{1} \end{equation*}$ Photon energy not high enough [< work function] Electrons can't escape (1) $f=\frac{\left(E_{k \max }+\phi\right)}{h}$ or correct transposition at any stage or by implic(1) $\begin{equation*} =1.0 \times 10^{15}[\mathrm{~Hz}] \tag{1} \end{equation*}$ $\begin{equation*} 3.2 \times 10^{-19}[\mathrm{~J}] \tag{1} \end{equation*}$ This uses the higher energy [or the higher frequency] photons, or produces the higher energy electrons, or photons don't co-operate or equivalent 2.0 [V]ecf	1 2 2 2 1
				Question 5 Total	[9]
6	(a)	(i) (ii) (iii)	(I) (II)	$\begin{align*} & \lambda=\frac{h c}{\Delta E} \text { or }\left[\lambda=\frac{c}{f} \text { and } E=h f\right] \text { or } f=2.8 \times 10^{14}[\mathrm{~Hz}] \tag{1}\\ & \lambda=1.06 \times 10^{-6}[\mathrm{~m}](1) \end{align*}$ $u p$ arrow from L to U (1) Photon's energy given to atom or electron (1) [Incident] photon causes electron to drop from U to L . (1) Incident photon must have energy $E_{\mathrm{U}}-E_{\mathrm{L}}$ or equivalent (1) Photon emitted so now 2 photons present; accept by implic from emitted photon in phase.(1) Need more electrons in U than L. Accept: need pop'n inversion (1) Electrons pumped to P and drop to U (1) Electrons drop from L to ground [helping to keep L depopulated].(1) Any 2 x (1): monochromatic [or equivalent e.g. long wave-trains] photons in phase (don't accept waves in phase) light in phase (or wavefronts continuous) across width of beam	2 2 2 3 3 3 3
				Question 6 Total	[12]

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Question} \& Marking details \& Mark Available \\
\hline 7 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \& \begin{tabular}{l}
\(\lambda_{\text {peak }}=430 \mathrm{n}[\mathrm{m}][\pm 10 \mathrm{~nm}]\) (1) \\
\(T=6700[\mathrm{~K}]\) ecf on \(\lambda_{\text {peak }}\), provided it's not 1200 nm \\
\(T=5400[\mathrm{~K}][\pm 250 \mathrm{~K}]\) \\
bluer or whiter at maximum \(T\) or redder at minimum \(T\) \\
\(A=\frac{P}{\sigma T^{4}}\) (transposition at any stage) or by implication (1) \\
\(A=\frac{1.46 \times 10^{30}}{5.76 \times 10^{-8} \times 6700^{4}}\left[=1.3 \times 10^{22} \mathrm{~m}^{2}\right]\) ecf on \(T\) \\
use of \(A=4 \pi r^{2}\) or \(A=\pi d^{2}\) \\
\(d=6.4 \times 10^{10}[\mathrm{~m}] \quad\) ecf on \(T\) if value from (a)(i) used \\
Slips of factors of 2 or 10 lose 1 mark each.
\[
\begin{align*}
\& \left(\frac{P_{\min }}{P_{\max }}\right)=\left(\frac{T_{\min }}{T_{\max }}\right)^{4} \text { or } P_{\min }=6.2 \times 10^{29} \mathrm{~W} \text { ecf } \tag{1}\\
\& \frac{P_{\min }}{P_{\max }}=0.42 \text { ecf } \quad \text { or } P_{\max }-P_{\min }=8.4 \times 10^{29} \mathrm{~W} \text { ecf } \tag{1}\\
\& \left(\frac{P_{\max }-P_{\min }}{P_{\max }}\right)=0.58[\text { accept }]=58 \% \tag{1}
\end{align*}
\]
\end{tabular} \& 2
1
1

4

\hline \& \& \& \& Question 7 Total \& [11]

\hline 8 \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& | (I) |
| :--- |
| (II) | \& | $+2,0 \quad$ (1) |
| :--- |
| ūd, $-1,0$ (1) |
| [blank], 0, 1 [Accept 'none' instead of cell left blank.] |
| Sun or stars |
| e-m and γ or photon involvement |
| In stage 1: $0+0$ goes to $0-1+1$ [or equivalent] (1) |
| In stages 2 and 3, zeros throughout or equivalent (1) |
| uud + uud goes to uud + udd accept d: $2 \rightarrow 3$, u: $4 \rightarrow 3$ (1) |
| $\mathrm{A} u$ is lost and ad is gained [or $\mathrm{a} u$ changes to ad]. (1) |
| Neither involves weak force or equivalent e.g. only strong [and em] force involved. | \& | 3 |
| :--- |
| 1 |
| 1 |
| 2 |
| 2 |

\hline \& \& \& \& Question 8 Total \& [10]

\hline
\end{tabular}

